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With the rapid development of power electronic technology, the non-sinusoidal power supply have already been applied in a variety 

of electrical machines. The voltage or current waveform of the power source contains many higher harmonic components, which leads 

to distorted magnetic flux density in the motor core. Consequently, the total iron loss may increase. In order to predict the iron loss 

accurately, one has to measure and model the magnetic properties of silicon steel sheets under non-sinusoidal exciting condition. Jiles-

Atherton (JA) model is one of most popular physical background based hysteresis models and employed to describe the static 

hysteresis characteristics. To extend the scope of application, this article proposes a simple modeling algorithm to model the dynamic 

hysteresis behavior. Finally, the calculated hysteresis loops are compared with measured ones to validated the proposed method. 

 
Index Terms—Frequency-dependent, Jiles-Atherton model, Magnetic properties, Minor loops 

 

I. INTRODUCTION 

T is known that iron loss in the motor core is increased by 

the non-sinusoidal excitation, such as square and PWM 

waveform. These waveforms contain much higher harmonic 

components [1]. To predict the iron loss for electrical steel 

sheets (ESS) accurately, it is necessary to investigate the 

hysteresis behavior which can consider the minor loops. On 

the other hand, it is important that the magnetic property is 

influenced by frequency in the alternating magnetization 

process, the difference of hysteresis loops cannot be ignored. 

JA hysteresis model simulates the magnetization process by 

introducing theory of domain wall motion with pinning effects, 

which can be expressed by a first-order ODE and merely five 

material related parameters. However, the original JA model 

can only describe static hysteresis loops. When non-sinsoidal 

excitation is applied, in this case, the B or H waveform will be 

arbitrary shape, therefore, a series of minor loops may appear 

in the major hysteresis loop and it could lead to increase the 

total iron loss[2]. 

Many factors can affect the magentic properties of 

ferromagnetic materials such as temperature, stress, and 

excitation condition. One of the significant factors is 

frequency. In the experimental process, we can find that the 

iron loss is increased with the ascend of frequency [3]. 

To extend the application scope of hysteresis model, the 

modified pinning factor k and reversible magnetization related 

parameter c are proposed to consider the minor loops. On the 

other hand, a novel dynamic term is introduced to consider the 

characteristecs of frequency on the base of static model. 

Finally, in the paper, a comprehensive dynamic hysteresis 

model is derived, which are capable of simulating both minor 

loops and frequency dependent hysteresis properties. 

II. MODELING DYNAMIC HYSTERESIS LOOPS 

A. Improved JA Hysteresis Model for Minor Loops 

The original JA model is based on the theory of magnetic 

domain. The bulk magnetization M is the sum of the two 

components: reversible Mrev and irreversible Mirr. The final 

differential equation of JA model can be expressed: 
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where Man is the anhysteretic magnetization can be given by 

the modified Langevin equation. 
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According to the above equation, the only five parameters: 

(Ms, a, k, c, α) are used to simulate the magnetic properties 

for ESS. The value of δ is a directional parameter, and if 

dH/dt>0, it is +1, if dH/dt<0, it is -1. δm is introduced to 

remove the negative susceptibilities at the tips of hysteresis 

loop, and if (Man-M)<0, it is 0, in contrary, if is positive, it is 

1 [4]. 

In the classical model, the five parameters to be identified 

are considered to be constant. For achieving the objective to 

accurate simulate the minor loops, according to the presented 

theory by D. C. Jiles in 1992, and combine the experimental 

observation and empirical considerations. This paper propose 

a modified method by changing parameters k and c in the 

interval of minor loop. The minor loops are generated by the 

non-sinusoidal alternating magnetization, as a result of, the 

component of reversible and irreversible could be changed. 

Therefore, the parameters k and c may be modified when the 

time interval of occurrence of minor loops. 
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In Eq. (3), kmaj and cmaj are the parameter value for JA model 

to simulate the major loop, however, during the minor loops, 

the parameter k is the sum of both kmaj and kmin. Another 

parameter c can be determined by the same way. In order to 

avoid unphysical phenomenon of Fig. 1(a), the two 

I 



parameters may be controlled by the way of Fig. 1(b). In Fig. 

1(a), the point 1 and 2 are the start and end location, 

respectively. The modified JA model parameter identification 

problem can be converted to global optimization problem 

which minimize the error between calculated and measured B. 

The single object particle swarm optimization algorithm is 

adopted in this paper to search the optimal parameter set. 

The hysteresis loop for sinusoidal magnetic field intensity 

adds merely the third harmonic is to evidence the feasible 

approach. The parameters of improving JA model is: Ms=1.85

× 10
6
A/m, a=95.3, kmaj=62.5, cmaj=0.416, α=0.0001098, 

kmin=-11.5, cmin=-0.26. The major and minor loops have a 

good agreement with the measured loop shown in Fig. 2. 

B. Frequency-Dependent Hysteresis Model 

Under the condition of quasi-static state, the loss is mainly 

comprised with magnetic hysteresis loss. With the increase of 

excitation frequency, the eddy current loss and excess loss are 

more and more remarkable. Because of the reason, the shape 

of hysteresis loops is more and more close to the ellipse [5]. A 

accurate hysteresis model which can consider the effect of 

frequency, up to now, has not been proposed. 

For some materials, the iron loss can be predicted by an 

accurate static hysteresis model, but if the frequency of 

applied magnetic field is increased, the total iron loss is, in 

general, underestimated because of missing the eddy loss and 

excess loss. In order to precisely predict the total loss, the 

articles proposes a dynamic hysteresis model. An additional 

item can consider the frequency factor is introduced on the 

base of the static JA hysteresis model. 

The equation of dynamic hysteresis model is expressed 

below: 
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where B(H) is the total magnetic flux density, the first term of 

Eq. (4). is the static component determined from original JA 

model, and the second term is the dynamic component. The 

f0 and f1 are the boundary frequencies according to the 

specific case. The value of γ is a function which is related to 

frequency, the function is follows: 

   0( ) / ( )f f f g f    (5) 

where the g(f) is a polynomial function. and the least square 

method is used to identify the coefficients. 

A series of hysteresis loops are measured under different 

frequencies of 50Hz, 100Hz, 150Hz, 250Hz and 400Hz, 

respectively. Then, f0=50Hz and f1=400Hz are chosen to 

model the frequency-dependent JA model and Bf0(H) and 

Bf1(H) are magnetic flux density data at f0 and f1, respectively. 

The coefficients of formula g(f) in Eq. (5) are determined by 

several measurement loops under the different frequencies 

(f=100Hz, 400Hz). Fig. 3 shows the comparison between 

measurement and calculated hysteresis loops under the 

frequency of f=150Hz, 250Hz at B=0.8T. In this example, the 

order of polynomial function g(f) is merely first order that 

can satisfy the demand for the frequency range, and 

coefficients are 0.888 and 7.8, respectively. The results can 

validate the proposed algorithm. 

In order to extend the representation of minor loops and 

frequency-dependent by JA hysteresis model, Fig. 2 and 3 

verify the validity of the proposed method, respectively, 

when the magnetic field intensity only contains the third 

harmonic with different frequencies. 

In the full version of paper, we are going to make JA model 

implement simulate the hysteresis loops contain more higher 

harmonic under PWM supply and different fundamental 

frequencies. 
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(a). Non-closure minor loop (b). Variety process for k 

Fig. 1. The sketch of variable parameters determination. 

 
Fig. 2. A comparison between measured and calculated curves include the 

third harmonic. 
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Fig. 3. A comparison between measured and calculated curves under 150Hz 

and 250Hz 
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